Partial Derivatives

· Springer Science & Business Media
E-book
57
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

THIS book, like its predecessors in the same series, is in tended primarily to serve the needs of the university student in the physical sciences. However, it begins where a really elementary treatment of the differential calculus (e. g. , Dif ferential Calculus,t in this series) leaves off. The study of physical phenomena inevitably leads to the consideration of functions of more than one variable and their rates of change; the same is also true of the study of statistics, economics, and sociology. The mathematical ideas involved are des cribed in this book, and only the student familiar with the corresponding ideas for functions of a single variable should attempt to understand the extension of the method of the differential calculus to several variables. The reader should also be warned that, with the deeper penetration into the subject which is required in studying functions of more than one variable, the mathematical argu ments involved also take on a more sophisticated aspect. It should be emphasized that the basic ideas do not differ at all from those described in DC, but they are manipulated with greater dexterity in situations in which they are, perhaps, intuitively not so obvious. This remark may not console the reader bogged down in a difficult proof; but it may well happen (as so often in studying mathematics) that the reader will be given insight into the structure of a proof by follow ing the examples provided and attempting the exercises.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.