Partial Derivatives

· Springer Science & Business Media
ebook
57
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

THIS book, like its predecessors in the same series, is in tended primarily to serve the needs of the university student in the physical sciences. However, it begins where a really elementary treatment of the differential calculus (e. g. , Dif ferential Calculus,t in this series) leaves off. The study of physical phenomena inevitably leads to the consideration of functions of more than one variable and their rates of change; the same is also true of the study of statistics, economics, and sociology. The mathematical ideas involved are des cribed in this book, and only the student familiar with the corresponding ideas for functions of a single variable should attempt to understand the extension of the method of the differential calculus to several variables. The reader should also be warned that, with the deeper penetration into the subject which is required in studying functions of more than one variable, the mathematical argu ments involved also take on a more sophisticated aspect. It should be emphasized that the basic ideas do not differ at all from those described in DC, but they are manipulated with greater dexterity in situations in which they are, perhaps, intuitively not so obvious. This remark may not console the reader bogged down in a difficult proof; but it may well happen (as so often in studying mathematics) that the reader will be given insight into the structure of a proof by follow ing the examples provided and attempting the exercises.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.