The Non-Euclidean, Hyperbolic Plane: Its Structure and Consistency

·
· Springer Science & Business Media
Ebook
333
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The discovery of hyperbolic geometry, and the subsequent proof that this geometry is just as logical as Euclid's, had a profound in fluence on man's understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive geometry, the equiconsistency of hyperbolic plane geometry and euclidean plane geometry can be proved without the use of any advanced mathematics. These two facts provided both the motivation and the two central themes of the present work. Basic hyperbolic plane geometry, and the proof of its equal footing with euclidean plane geometry, is presented here in terms acces sible to anyone with a good background in high school mathematics. The development, however, is especially directed to college students who may become secondary teachers. For that reason, the treatment is de signed to emphasize those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli dean geometry with some mastery.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.