Oxidative Stress Responses in Plants

·
· Advances in Botanical Research 第 105 本图书 · Elsevier
电子书
358
符合条件
评分和评价未经验证  了解详情

关于此电子书

Oxidative Stress Response in Plants, Volume 105 covers environmental stress conditions and the accumulation of reactive oxygen species (ROS). During many stress conditions such as salt, drought, heat, and pathogen infection, changes in metabolic fluxes and alterations in enzymatic activities result in the accumulation of ROS, a major contributor to loss of growth and productivity. High levels of ROS can lead to oxidative stress which damages proteins and DNA, ultimately resulting in plant cell death. This volume provides comprehensive insights into ROS biology in plants, with a focus on plant growth and development, plant defense responses, and plant acclimation to challenging environments. On the other hand, ROS evolves into potent signaling molecules that play crucial roles in abiotic and biotic stress sensing, integration of different environmental signals, and activation of stress-response networks, thereby contributing to the establishment of improved stress resilience. - Provides a comprehensive overview of ROS biology in plants - Focuses on the production, processing and signaling roles of ROS in plants - Written by world-leading experts

作者简介

Frank Van Breusegem is since 2001 group leader of the Oxidative Stress Signaling group at the VIB Center for Plant Systems Biology and full professor at Ghent University. Since his early studies under the supervision of em. Prof. Marc Van Montagu, he focuses on the molecular impact of oxidative stress on plant cells. He obtained his PhD from Ghent University (Ghent, 1997) with work on “Engineering Stress Tolerance in Maize. Nowadays, the primary objective of the Van Breusegem lab is still the identification and functional analysis of regulatory gene and protein networks involved in the oxidative stress response in plants. Ultimately, he aims to translate this knowledge into biotechnological crop efficiency concepts. The lab has played a pioneering role in determining H2O2 dependent molecular and physiological responses in plants. The Van Breusegem lab is internationally recognized mainly because of its successful multi-omics driven approaches that allowed to identify several key targets in the oxidative stress response. Frank Van Breusegem has published over 150 peer-reviewed publications (h index=67), is a frequent invited speaker and is monitoring editor of the leading plant journal “Plant Physiology.

Ron Mittler is a Professor in the Division of Plant Sciences and Technology and in the Department of Surgery, and a Bond Life Sciences Center Investigator, at the University of Missouri, Columbia. He received his Ph.D. in Biochemistry from Rutgers University, New Jersey, USA in 1993. His research is focused on reactive oxygen species metabolism and signaling in plant and animal cells, systemic responses of plants to stress, cancer biology, and stress combination. He discovered the ROS wave and pioneered research on stress combination in plants. Ron Mittler published over 180 peer-reviewed publications (h index=92) and is a Biochemistry Subject Editor in Physiologia Plantarum, an Advisory Editorial Board member in Trends in Plant Science, and an Editor in The Plant Journal.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。