Optimization Methods in Partial Differential Equations: Proceedings from the 1996 Joint Summer Research Conference, June 16-20, 1996, Mount Holyoke College

·
· Contemporary mathematics - American Mathematical Society Libro 209 · American Mathematical Soc.
eBook
349
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This book presents a collection of papers written by specialists in the field and devoted to the analysis of various aspects of optimization problems with a common focus on partial differential equation (PDE) models. These papers were presented at the AMS-SIAM 1996 Joint Summer Research Conference held at Mount Holyoke College, South Hadley, MA, in June 1996. The problems considered range from basic theoretical issues in the calculus of variations - such as infinite dimensional Hamilton Jacobi equations, saddle point principles, and issues of unique continuation - to ones focusing on application and computation, where theoretical tools are tuned to more specifically defined problems.The last category of these problems include inverse/recovery problems in physical systems, shape optimization and shape design of elastic structures, control and optimization of fluids, boundary controllability of PDE's including applications to flexible structures, etc. The papers selected for this volume are at the forefront of research and point to modern trends and open problems. This book will be a valuable tool not only to specialists in the field interested in technical details, but also to scientists entering the field who are searching for promising directions for research.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.

Continúa la serie

Más de Steven Cox

eBooks similares