Optimal Control and Geometry: Integrable Systems

· Cambridge Studies in Advanced Mathematics 154권 · Cambridge University Press
eBook
437
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.

저자 정보

Professor Velimir Jurdjevic is one of the founders of geometric control theory. His pioneering work with H. J. Sussmann was deemed to be among the most influential papers of the century and his book, Geometric Control Theory, revealed the geometric origins of the subject and uncovered important connections to physics and geometry. It remains a major reference on non-linear control. Jurdjevic's expertise also extends to differential geometry, mechanics and integrable systems. His publications cover a wide range of topics including stability theory, Hamiltonian systems on Lie groups, and integrable systems. He has spent most of his professional career at the University of Toronto.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.