Operators on Hilbert Space

· Texts and Readings in Mathematics Cartea 71 · Springer
1,0
O recenzie
Carte electronică
100
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.

Evaluări și recenzii

1,0
O recenzie

Despre autor

Vaikalathur Shankar Sunder (or V.S. Sunder) is professor of mathematics at the Institute of Mathematical Sciences (commonly known as MATSCIENCE). He specialises in subfactors, operator algebras and functional analysis in general. In 1996, he was awarded the Shanti Swarup Bhatnagar Prize for Science and Technology, the highest science award in India, in the mathematical sciences category. He is one of the first Indian operator algebraists. In addition to publishing over 60 papers, he has written six books including at least three monographs at the graduate level or higher on von Neumann algebras. One of the books was co-authored with Vaughan Jones, an operator algebraist, who has received the Fields Medal.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.