Operational Modal Analysis: Modeling, Bayesian Inference, Uncertainty Laws

· Springer
电子书
542
评分和评价未经验证  了解详情

关于此电子书

This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. The authors provide their data freely in the web at https://doi.org/10.7910/DVN/7EVTXG


Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3),which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic processes) and in Chapter 5 (on stochastic structural dynamics). In turn, Chapter 6 introduces the basics of ambient vibration instrumentation and data characteristics, while Chapter 7 discusses the analysis and simulation of OMA data, covering different types of data encountered in practice. Bayesian and classical statistical approaches to system identification are introduced in a general context in Chapters 8 and 9, respectively.
Chapter 10 provides an overview of different Bayesian OMA formulations, followed by a general discussion of computational issues in Chapter 11. Efficient algorithms for different contexts are discussed in Chapters 12–14 (single mode, multi-mode, and multi-setup). Intended for readers with a minimal background in mathematics, Chapter 15 presents the ‘uncertainty laws’ in OMA, one of the latest advances that establish the achievable precision limit of OMA and provide a scientific basis for planning ambient vibration tests. Lastly Chapter 16 discusses the mathematical theory behind the results in Chapter 15, addressing the needs of researchers interested in learning the techniques for further development. Three appendix chapters round out the coverage.
This book is primarily intended for graduate/senior undergraduate students and researchers, although practitioners will also find the book a useful reference guide. It covers materials from introductory to advanced level, which are classified accordingly to ensure easy access. Readers with an undergraduate-level background in probability and statistics will find the book an invaluable resource, regardless of whether they are Bayesian or non-Bayesian.

作者简介

Dr. Au is Professor of Uncertainty, Reliability & Risk in the Center for Engineering Dynamics and Institute for Risk & Uncertainty, University of Liverpool (UK); and Chutian Professor in the School of Water Resources & Hydropower Engineering, Wuhan University (China). He holds a PhD (2001, Caltech) in civil engineering and has been working in the area of the monograph for over twenty years. He performs fundamental and applied research in engineering risk methods and structural health monitoring. He has developed an advanced Monte Carlo method called Subset Simulation that has found applications in many disciplines, e.g., civil, mechanical, aerospace, electrical and nuclear engineering. He is experienced in full-scale dynamic testing of structures and has consulted on vibration projects on long-span pedestrian bridges, large-span floors, super-tall buildings and micro-tremors. Dr. Au is recipient of the IASSAR Junior Research Prize (2005), Nishino Prize (2011),JSPS Fellowship (2014) and Tan Chin Tuan Fellowship (2015).

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。