Self-Similar Processes in Telecommunications considers the self-similar (fractal and multifractal) models of telecommunication traffic and efficiency based on the assumption that its traffic has fractal or multifractal properties (is self-similar). The theoretical aspects of the most well-known traffic models demonstrating self-similar properties are discussed in detail and the comparative analysis of the different models’ efficiency for self-similar traffic is presented.
This book demonstrates how to use self-similar processes for designing new telecommunications systems and optimizing existing networks so as to achieve maximum efficiency and serviceability. The approach is rooted in theory, describing the algorithms (the logical arithmetical or computational procedures that define how a task is performed) for modeling these self-similar processes. However, the language and ideas are essentially accessible for those who have a general knowledge of the subject area and the advice is highly practical: all models, problems and solutions are illustrated throughout using numerous real-world examples.
The book will appeal to the wide range of specialists dealing with the design and exploitation of telecommunication systems. It will be useful for the post-graduate students, lecturers and researchers connected with communication networks disciplines.
Sergey M. Smolskiy is Head of the Department of Radio Receivers in the Moscow Power Engineering Institute (MPEI). He has extensive experience in the field of telecommunications and is an active member of IEEE. His recent research topics include low distance radar systems and radio measuring systems.
Andrey V. Osin is currently Assistant Professor in the Department of Radio Engineering and Radio Systems at MSTUC. His PhD thesis focused on imitation modeling of self-similar processes in telecommunications and he has since published widely on the subject in numerous articles and conference journals.