Numerical Linear Algebra and Optimization

· Classics in Applied Mathematics 83 knyga · SIAM
El. knyga
448
Puslapiai
Tinkama
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This classic volume covers the fundamentals of two closely related topics: linear systems (linear equations and least-squares) and linear programming (optimizing a linear function subject to linear constraints). For each problem class, stable and efficient numerical algorithms intended for a finite-precision environment are derived and analyzed. While linear algebra and optimization have made huge advances since this book first appeared in 1991, the fundamental principles have not changed.

These topics were rarely taught with a unified perspective, and, somewhat surprisingly, this remains true 30 years later. As a result, some of the material in this book can be difficult to find elsewhere—in particular, techniques for updating the LU factorization, descriptions of the simplex method applied to all-inequality form, and the analysis of what happens when using an approximate inverse to solve Ax=b.

Numerical Linear Algebra and Optimization is primarily a reference for students who want to learn about numerical techniques for solving linear systems and/or linear programming using the simplex method; however, Chapters 6, 7, and 8 can be used as the text for an upper-division course on linear least squares and linear programming. Understanding is enhanced by numerous exercises.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.