Numerical Approximations of Stochastic Maxwell Equations: via Structure-Preserving Algorithms

· ·
· Springer Nature
eBook
284
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems.

This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience.

The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.


저자 정보

Chuchu Chen is an associate professor at the Chinese Academy of Sciences. She obtained her Ph.D. in 2015 at the Chinese Academy of Sciences. Her research interest is in the numerical analysis of stochastic partial differential equations, especially in the structure-preserving algorithms for stochastic Hamiltonian PDEs including the stochastic Maxwell equations and the stochastic Schrödinger equation, the analysis of the long-time dynamical behaviors including the ergodicity and intermittency of stochastic numerical methods, the influence of numerical discretizations on the statistical properties like the hitting probability and density function of stochastic PDEs.

Jialin Hong is a professor at the Chinese Academy of Sciences. He obtained his Ph.D. in 1994 at Jilin University. He works in various directions including structure-preserving algorithms for dynamical systems involving symplectic and multi-symplectic methods for Hamiltonian ODEs andPDEs, Lie group methods and applications, numerical dynamics including chaos, bifurcations for discrete systems, numerical methods for stochastic ordinary differential systems, stochastic partial differential equations, and backward stochastic differential equations, almost periodic dynamical systems, and ergodic theory.

Lihai Ji is an associate professor at the Institute of Applied Physics and Computational Mathematics. He obtained his Ph.D. in 2013 at the Chinese Academy of Sciences. He works in stochastic partial differential equations and their numerical algorithms. He has been investigating the construction and analysis of various energy-preserving algorithms, positive-preserving algorithms, stochastic symplectic and multi-symplectic algorithms for the stochastic Lotka–Volterra model and stochastic Hamiltonian PDEs including the stochastic Maxwell equations, the stochastic Schrödinger equation, and the coupled stochastic Schrödinger equation.


이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.