Nonstandard Methods and Applications in Mathematics

· ·
· Lecture Notes in Logic Βιβλίο 25 · Cambridge University Press
ebook
260
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twenty-fifth publication in the Lecture Notes in Logic series, grew from a conference on Nonstandard Methods and Applications in Mathematics held in Pisa, Italy from 12–16 June, 2002. It contains ten peer-reviewed papers that aim to provide something more timely than a textbook, but less ephemeral than a conventional proceedings. Nonstandard analysis is one of the great achievements of modern applied mathematical logic. These articles consider the foundations of the subject, as well as its applications to pure and applied mathematics and mathematics education.

Σχετικά με τον συγγραφέα

Nigel J. Cutland is a Professor of Mathematics at the University of York where he researches logic and foundations of mathematics, stochastic analysis and nonstandard analysis and its applications.

Mauro Di Nasso is a Professor at the Università degli Studi, Pisa where he researches model theory and nonstandard analysis.

David A. Ross is a Professor at the University of Hawaii, Manoa where he researches nonstandard analysis and probability theory.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.