Nonparametric Estimation under Shape Constraints: Estimators, Algorithms and Asymptotics

·
· Cambridge Series in Statistical and Probabilistic Mathematics Kniha 38 · Cambridge University Press
E‑kniha
429
Stránky
Hodnocení a recenze nejsou ověřeny  Další informace

Podrobnosti o e‑knize

This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.

O autorovi

Piet Groeneboom is Professor Emeritus of Statistics at Delft University of Technology, The Netherlands.

Geurt Jongbloed is Professor of Statistics at Delft University of Technology, The Netherlands.

Ohodnotit e‑knihu

Sdělte nám, co si myslíte.

Informace o čtení

Telefony a tablety
Nainstalujte si aplikaci Knihy Google Play pro AndroidiPad/iPhone. Aplikace se automaticky synchronizuje s vaším účtem a umožní vám číst v režimu online nebo offline, ať jste kdekoliv.
Notebooky a počítače
Audioknihy zakoupené na Google Play můžete poslouchat pomocí webového prohlížeče v počítači.
Čtečky a další zařízení
Pokud chcete číst knihy ve čtečkách elektronických knih, jako např. Kobo, je třeba soubor stáhnout a přenést do zařízení. Při přenášení souborů do podporovaných čteček elektronických knih postupujte podle podrobných pokynů v centru nápovědy.