Nonlinear Waves: An Introduction

· Series On Analysis, Applications And Computation Libro 4 · World Scientific Publishing Company
Ebook
180
pagine
Idoneo
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

This book deals with equations of mathematical physics as the different modifications of the KdV equation, the Camassa-Holm type equations, several modifications of Burger's equation, the Hunter-Saxton equation and others. The equations originate from physics but are proposed here for their investigation via purely mathematical methods in the frames of university courses. More precisely, the authors propose classification theorems for the traveling wave solutions for a sufficiently large class of third order nonlinear PDE when the corresponding profiles develop different kind of singularities (cusps, peaks). The orbital stability of the periodic solutions of traveling type for mKdV equations are also studied. Of great interest too is the interaction of peakon type solutions of the Camassa-Holm equation and the solvability of the classical and generalized Cauchy problem for the Hunter-Saxton equation. The Riemann problem for special systems of conservation laws and the corresponding d-shocks are also considered. At the end of the book the authors study the interaction of two piecewise smooth waves in the case of two space variables and they verify the appearance of logarithmic singularities. As it concerns numerical methods in the case of periodic waves the authors apply Cellular Neural Network (CNN) approach.

Informazioni sull'autore

Petar Popivanov (Bulgarian Academy of Sciences, Bulgaria);Angela Slavova (Bulgarian Academy of Sciences, Bulgaria)

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.