Nonlinear Programming

· SIAM
E-knjiga
235
Broj stranica
Prihvatljiva
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.