Nonlinear Partial Differential Equations in Engineering: Mathematics in Science and Engineering: A Series of Monographs and Textbooks, Vol. 18, Volume 18

· Elsevier
e-Buku
526
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Nonlinear Partial Differential Equations in Engineering discusses methods of solution for nonlinear partial differential equations, particularly by using a unified treatment of analytic and numerical procedures. The book also explains analytic methods, approximation methods (such as asymptotic processes, perturbation procedures, weighted residual methods), and specific numerical procedures associated with these equations. The text presents exact methods of solution including the quasi-linear theory, the Poisson-Euler-Darboux equation, a general solution for anisentropic flow, and other solutions obtained from ad hoc assumptions. The book explores analytic methods such as an ad hoc solution from magneto-gas dynamics. Noh and Protter have found the Lagrange formulation to be a convenient vehicle for obtaining "soft" solutions of the equations of gas dynamics. The book notes that developing solutions in two and three dimensions can be achieved by employing Lagrangian coordinates. The book explores approximate methods that use analytical procedures to obtain solutions in the form of functions approximating solutions of nonlinear problems. Approximate methods include integral equations, boundary theory, maximum operation, and equations of elliptic types. The book can serve and benefit mathematicians, students of, and professors of calculus, statistics, or advanced mathematics.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.