Nonlinear Dimensionality Reduction: Advanced Techniques for Enhancing Data Representation in Robotic Systems

· Robotics Science Книга 42 · One Billion Knowledgeable
Электронная книга
320
Количество страниц
Можно добавить
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

1: Nonlinear dimensionality reduction: Explore foundational concepts and the importance of reducing highdimensional data for easier analysis.

2: Linear map: Introduces the basics of linear mapping and its role in reducing data dimensionality in machine learning.


3: Support vector machine: Learn how support vector machines apply dimensionality reduction in classification tasks and pattern recognition.


4: Principal component analysis: Delve into PCA's technique for transforming data into a set of linearly uncorrelated variables.


5: Isometry: Examine how isometric techniques preserve distances between points while reducing data dimensions.


6: Dimensionality reduction: Understand the broader scope of dimensionality reduction and its applications in various fields.


7: Semidefinite embedding: Study semidefinite programming and its connection to dimensionality reduction methods.


8: Kernel method: Discover the power of kernel methods in handling nonlinear relationships in data reduction.


9: Kernel principal component analysis: Explore KPCA’s capability to perform dimensionality reduction in a highdimensional feature space.


10: Numerical continuation: Learn how numerical continuation techniques assist in understanding highdimensional systems.


11: Spectral clustering: Understand how spectral clustering leverages dimensionality reduction to group similar data points.


12: Isomap: A look at Isomap, a technique that combines multidimensional scaling with geodesic distances for dimensionality reduction.


13: Johnson–Lindenstrauss lemma: Delve into the mathematics of the JohnsonLindenstrauss lemma, which ensures dimensionality reduction maintains geometric properties.


14: LinearnonlinearPoisson cascade model: Study how this model integrates linear and nonlinear methods in dimensionality reduction.


15: Manifold alignment: Learn about manifold alignment and its importance in aligning data from different domains in dimensionality reduction.


16: Diffusion map: Understand how diffusion maps use the diffusion process for dimensionality reduction in complex datasets.


17: Tdistributed stochastic neighbor embedding: Explore tSNE's ability to reduce dimensionality while preserving local structures in data.


18: Kernel embedding of distributions: Study how kernel embedding allows for dimensionality reduction on distributions, not just datasets.


19: Random projection: A practical approach to dimensionality reduction that relies on random projections for fast computation.


20: Manifold regularization: Learn about manifold regularization techniques and their impact on learning from highdimensional data.


21: Empirical dynamic modeling: Discover how empirical dynamic modeling aids in dimensionality reduction through time series data analysis.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.

Продолжение серии

Другие книги автора Fouad Sabry

Похожие электронные книги