Nonholonomic Mechanics and Control

· Interdisciplinary Applied Mathematics Libro 24 · Springer Science & Business Media
eBook
484
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Our goal in this book is to explore some of the connections between control theory and geometric mechanics; that is, we link control theory with a g- metric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems s- ject to motion constraints. This synthesis of topics is appropriate, since there is a particularly rich connection between mechanics and nonlinear control theory. While an introduction to many important aspects of the mechanics of nonholonomically constrained systems may be found in such sources as the monograph of Neimark and Fufaev [1972], the geometric view as well as the control theory of such systems remains largely sc- tered through various research journals. Our aim is to provide a uni?ed treatment of nonlinear control theory and constrained mechanical systems that will incorporate material that has not yet made its way into texts and monographs. Mechanicshastraditionallydescribedthebehavioroffreeandinteracting particles and bodies, the interaction being described by potential forces. It encompasses the Lagrangian and Hamiltonian pictures and in its modern form relies heavily on the tools of di?erential geometry (see, for example, Abraham and Marsden [1978]and Arnold [1989]). From our own point of view,ourpapersBloch,Krishnaprasad,Marsden,andMurray[1996],Bloch and Crouch [1995], and Baillieul [1998] have been particularly in?uential in the formulations presented in this book. Control Theory and Nonholonomic Systems. Control theory is the theory of prescribing motion for dynamical systems rather than describing vi Preface their observed behavior.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.