Noncommutative Geometry and Optimal Transport

·
· American Mathematical Soc.
Електронна книга
223
Страници
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

The distance formula in noncommutative geometry was introduced by Connes at the end of the 1980s. It is a generalization of Riemannian geodesic distance that makes sense in a noncommutative setting, and provides an original tool to study the geometry of the space of states on an algebra. It also has an intriguing echo in physics, for it yields a metric interpretation for the Higgs field. In the 1990s, Rieffel noticed that this distance is a noncommutative version of the Wasserstein distance of order 1 in the theory of optimal transport. More exactly, this is a noncommutative generalization of Kantorovich dual formula of the Wasserstein distance. Connes distance thus offers an unexpected connection between an ancient mathematical problem and the most recent discovery in high energy physics. The meaning of this connection is far from clear. Yet, Rieffel's observation suggests that Connes distance may provide an interesting starting point for a theory of optimal transport in noncommutative geometry.

This volume contains several review papers that will give the reader an extensive introduction to the metric aspect of noncommutative geometry and its possible interpretation as a Wasserstein distance on a quantum space, as well as several topic papers.

За автора

Edited by Pierre Martinetti: Università di Genova, Genova, Italy,
Jean-Christophe Wallet: CNRS, Université Paris-Sud 11, Orsay, France

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.