Non-integrable Dynamics: Time-quantitative Results

· ·
· World Scientific
电子书
400
符合条件
评分和评价未经验证  了解详情

关于此电子书

The subject of this monograph is to describe orbits of slowly chaotic motion. The study of geodesic flow on the unit torus is motivated by the irrational rotation sequence, where the most outstanding result is the Kronecker-Weyl equidistribution theorem and its time-quantitative enhancements, including superuniformity. Another important result is the Khinchin density theorem on superdensity, a best possible form of time-quantitative density. The purpose of this monograph is to extend these classical time-quantitative results to some non-integrable flat dynamical systems.The theory of dynamical systems is on the most part about the qualitative behavior of typical orbits and not about individual orbits. Thus, our study deviates from, and indeed is in complete contrast to, what is considered the mainstream research in dynamical systems. We establish non-trivial results concerning explicit individual orbits and describe their long-term behavior in a precise time-quantitative way. Our non-ergodic approach gives rise to a few new methods. These are based on a combination of ideas in combinatorics, number theory, geometry and linear algebra.Approximately half of this monograph is devoted to a time-quantitative study of two concrete simple non-integrable flat dynamical systems. The first concerns billiard in the L-shape region which is equivalent to geodesic flow on the L-surface. The second concerns geodesic flow on the surface of the unit cube. In each, we give a complete description of time-quantitative equidistribution for every geodesic with a quadratic irrational slope.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。