Non-Relativistic Quantum Dynamics

· Mathematical Physics Studies Kitabu cha 2 · Springer Science & Business Media
Kitabu pepe
238
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

The bulk of known results in spectral and scattering theory for Schrodinger operators has been derived by time-independent (also called stationary) methods, which make extensive use of re solvent estimates and the spectral theorem. In very recent years there has been a partial shift of emphasis from the time-indepen dent to the time-dependent theory, due to the discovery of new, essentially time-dependent proofs of a fair number of the principal results such as asymptotic completeness, absence of singularly con tinuous spectrum and properties of scattering cross sections. These new time-dependent arguments are somewhat simpler than the station ary ones and at the same time considerably closer to physical in tuition, in that they are based on a rather detailed description of the time evolution of states in configUration space (whence the designation "geometric methods" used by some authors). It seemed interesting to me to present some of these new meth ods from a strictly time-dependent point of view, by considering as the basic mathematical object strongly continuous unitary one parameter groups and avoiding the spectral theorem completely. The present volume may be viewed as an essay in this spirit. It is an extended version of a course taught in 1979 at the University of Geneva to undergraduate students enrolled in mathematical physics.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.