The aim of this thesis is to analyse the potential and limitations of using cellular network data for traffic analysis. In the three papers included in the thesis, contributions are made to the trip extraction, travel demand and route inference steps part of a data-driven traffic analysis processing chain. To analyse the performance of the proposed algorithms, a number of datasets from different cellular network operators are used. The results obtained using different algorithms are compared to each other as well as to other available data sources.
A main finding presented in this thesis is that large-scale cellular network data can be used in particular to infer travel demand. In a study of data for the municipality of Norrköping, the results from cellular network data resemble the travel demand model currently used by the municipality, while adding more details such as time profiles which are currently not available to traffic planners. However, it is found that all later traffic analysis results from cellular network data can differ to a large extend based on the choice of algorithm used for the first steps of data filtering and trip extraction. Particular difficulties occur with the detection of short trips (less than 2km) with a possible under-representation of these trips affecting the subsequent traffic analysis.