Neural Modeling Fields: Fundamentals and Applications

ยท Artificial Intelligence เบซเบปเบงเบ—เบต 210 ยท One Billion Knowledgeable
เบ›เบถเป‰เบกเบญเบตเบšเบธเบ
152
เปœเป‰เบฒ
เบกเบตเบชเบดเบ”
เบšเปเปˆเป„เบ”เป‰เบขเบฑเป‰เบ‡เบขเบทเบ™เบเบฒเบ™เบˆเบฑเบ”เบญเบฑเบ™เบ”เบฑเบš เปเบฅเบฐ เบ„เบณเบ•เบดเบŠเบปเบก เบชเบถเบเบชเบฒเป€เบžเบตเปˆเบกเป€เบ•เบตเบก

เบเปˆเบฝเบงเบเบฑเบšเบ›เบถเป‰เบก e-book เบ™เบตเป‰

What Is Neural Modeling Fields

Neural modeling field (NMF) is a mathematical framework for machine learning that integrates ideas from neural networks, fuzzy logic, and model based recognition. Its acronym stands for "Neural Modeling Field." Modeling fields, modeling fields theory (MFT), and Maximum likelihood artificial neural networks (MLANS) are some of the other names that have been used to refer to this concept.At the AFRL, Leonid Perlovsky is the one responsible for developing this framework. The NMF can be understood as a mathematical description of the machinery that make up the mind. These mechanisms include ideas, feelings, instincts, imagination, reasoning, and comprehension. The NMF is organized in a hetero-hierarchical structure that contains many levels. There are concept-models that encapsulate the knowledge at each level of the NMF. These concept-models generate so-called top-down signals, which interact with input signals that come from lower levels. These interactions are governed by dynamic equations, which are responsible for driving concept-model learning, adaptation, and the development of new concept-models for better correspondence to the input, bottom-up signals.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Neural modeling fields


Chapter 2: Machine learning


Chapter 3: Supervised learning


Chapter 4: Unsupervised learning


Chapter 5: Weak supervision


Chapter 6: Reinforcement learning


Chapter 7: Neural network


Chapter 8: Artificial neural network


Chapter 9: Fuzzy logic


Chapter 10: Adaptive neuro fuzzy inference system


(II) Answering the public top questions about neural modeling fields.


(III) Real world examples for the usage of neural modeling fields in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of neural modeling fields' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of neural modeling fields.

เปƒเบซเป‰เบ„เบฐเปเบ™เบ™ e-book เบ™เบตเป‰

เบšเบญเบเบžเบงเบเป€เบฎเบปเบฒเบงเปˆเบฒเบ—เปˆเบฒเบ™เบ„เบดเบ”เปเบ™เบงเปƒเบ”.

เบญเปˆเบฒเบ™โ€‹เบ‚เปเป‰โ€‹เบกเบนเบ™โ€‹เบ‚เปˆเบฒเบงโ€‹เบชเบฒเบ™

เบชเบฐเบกเบฒเบ”เป‚เบŸเบ™ เปเบฅเบฐ เปเบ—เบฑเบšเป€เบฅเบฑเบ”
เบ•เบดเบ”เบ•เบฑเป‰เบ‡ เปเบญเบฑเบš Google Play Books เบชเบณเบฅเบฑเบš Android เปเบฅเบฐ iPad/iPhone. เบกเบฑเบ™เบŠเบดเป‰เบ‡เบ‚เปเป‰เบกเบนเบ™เป‚เบ”เบเบญเบฑเบ”เบ•เบฐเป‚เบ™เบกเบฑเบ”เบเบฑเบšเบšเบฑเบ™เบŠเบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™ เปเบฅเบฐ เบญเบฐเบ™เบธเบเบฒเบ”เปƒเบซเป‰เบ—เปˆเบฒเบ™เบญเปˆเบฒเบ™เบ—เบฒเบ‡เบญเบญเบ™เบฅเบฒเบ เบซเบผเบท เปเบšเบšเบญเบญเบšเบฅเบฒเบเป„เบ”เป‰ เบšเปเปˆเบงเปˆเบฒเบ—เปˆเบฒเบ™เบˆเบฐเบขเบนเปˆเปƒเบช.
เปเบฅเบฑเบšเบ—เบฑเบญเบš เปเบฅเบฐ เบ„เบญเบกเบžเบดเบงเป€เบ•เบต
เบ—เปˆเบฒเบ™เบชเบฒเบกเบฒเบ”เบŸเบฑเบ‡เบ›เบถเป‰เบกเบชเบฝเบ‡เบ—เบตเปˆเบŠเบทเป‰เปƒเบ™ Google Play เป‚เบ”เบเปƒเบŠเป‰เป‚เบ›เบฃเปเบเบฃเบกเบ—เปˆเบญเบ‡เป€เบงเบฑเบšเบ‚เบญเบ‡เบ„เบญเบกเบžเบดเบงเป€เบ•เบตเบ‚เบญเบ‡เบ—เปˆเบฒเบ™เป„เบ”เป‰.
eReaders เปเบฅเบฐเบญเบธเบ›เบฐเบเบญเบ™เบญเบทเปˆเบ™เป†
เป€เบžเบทเปˆเบญเบญเปˆเบฒเบ™เปƒเบ™เบญเบธเบ›เบฐเบเบญเบ™ e-ink เป€เบŠเบฑเปˆเบ™: Kobo eReader, เบ—เปˆเบฒเบ™เบˆเบณเป€เบ›เบฑเบ™เบ•เป‰เบญเบ‡เบ”เบฒเบงเป‚เบซเบผเบ”เป„เบŸเบฅเปŒ เปเบฅเบฐ เป‚เบญเบ™เบเป‰เบฒเบเบกเบฑเบ™เป„เบ›เปƒเบชเปˆเบญเบธเบ›เบฐเบเบญเบ™เบ‚เบญเบ‡เบ—เปˆเบฒเบ™เบเปˆเบญเบ™. เบ›เบฐเบ•เบดเบšเบฑเบ”เบ•เบฒเบกเบ„เบณเปเบ™เบฐเบ™เบณเบฅเบฐเบญเบฝเบ”เบ‚เบญเบ‡ เบชเบนเบ™เบŠเปˆเบงเบเป€เบซเบผเบทเบญ เป€เบžเบทเปˆเบญเป‚เบญเบ™เบเป‰เบฒเบเป„เบŸเบฅเปŒเป„เปƒเบชเปˆ eReader เบ—เบตเปˆเบฎเบญเบ‡เบฎเบฑเบš.

เบชเบทเบšเบ•เปเปˆเบŠเบธเบ”

เป€เบžเบตเปˆเบกเป€เบ•เบตเบกเบˆเบฒเบ Fouad Sabry

เบ›เบถเป‰เบกเบญเบตเบšเบธเบเบ—เบตเปˆเบ„เป‰เบฒเบเบ„เบทเบเบฑเบ™