Neural Modeling Fields: Fundamentals and Applications

ยท Artificial Intelligence แˆ˜แŒฝแˆแ 210 ยท One Billion Knowledgeable
แŠข-แˆ˜แŒฝแˆแ
152
แŒˆแŒพแ‰ฝ
แ‰ฅแ‰
แ‹จแ‰ฐแˆฐแŒกแ‰ต แ‹ฐแˆจแŒƒแ‹Žแ‰ฝ แŠฅแŠ“ แŒแˆแŒˆแˆ›แ‹Žแ‰ฝ แ‹จแ‰ฐแˆจแŒ‹แŒˆแŒก แŠ แ‹ญแ‹ฐแˆ‰แˆ ย แ‹จแ‰ แˆˆแŒ  แˆˆแˆ˜แˆจแ‹ณแ‰ต

แˆตแˆˆแ‹šแˆ… แŠข-แˆ˜แŒฝแˆแ

What Is Neural Modeling Fields

Neural modeling field (NMF) is a mathematical framework for machine learning that integrates ideas from neural networks, fuzzy logic, and model based recognition. Its acronym stands for "Neural Modeling Field." Modeling fields, modeling fields theory (MFT), and Maximum likelihood artificial neural networks (MLANS) are some of the other names that have been used to refer to this concept.At the AFRL, Leonid Perlovsky is the one responsible for developing this framework. The NMF can be understood as a mathematical description of the machinery that make up the mind. These mechanisms include ideas, feelings, instincts, imagination, reasoning, and comprehension. The NMF is organized in a hetero-hierarchical structure that contains many levels. There are concept-models that encapsulate the knowledge at each level of the NMF. These concept-models generate so-called top-down signals, which interact with input signals that come from lower levels. These interactions are governed by dynamic equations, which are responsible for driving concept-model learning, adaptation, and the development of new concept-models for better correspondence to the input, bottom-up signals.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Neural modeling fields


Chapter 2: Machine learning


Chapter 3: Supervised learning


Chapter 4: Unsupervised learning


Chapter 5: Weak supervision


Chapter 6: Reinforcement learning


Chapter 7: Neural network


Chapter 8: Artificial neural network


Chapter 9: Fuzzy logic


Chapter 10: Adaptive neuro fuzzy inference system


(II) Answering the public top questions about neural modeling fields.


(III) Real world examples for the usage of neural modeling fields in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of neural modeling fields' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of neural modeling fields.

แˆˆแ‹šแˆ… แŠข-แˆ˜แŒฝแˆแ แ‹ฐแˆจแŒƒ แ‹ญแˆตแŒก

แˆแŠ• แŠฅแŠ•แ‹ฐแˆšแ‹ซแˆตแ‰ก แ‹ญแŠ•แŒˆแˆฉแŠ•แข

แ‹จแŠ•แ‰ฃแ‰ฅ แˆ˜แˆจแŒƒ

แ‹˜แˆ˜แŠ“แ‹Š แˆตแˆแŠฎแ‰ฝ แŠฅแŠ“ แŒกแ‰ฃแ‹Šแ‹Žแ‰ฝ
แ‹จGoogle Play แˆ˜แŒฝแˆแแ‰ต แˆ˜แ‰ฐแŒแ‰ แˆชแ‹ซแ‹แŠ• แˆˆAndroid แŠฅแŠ“ iPad/iPhone แ‹ซแ‹แˆญแ‹ฑแข แŠจแŠฅแˆญแˆตแ‹Ž แˆ˜แˆˆแ‹ซ แŒ‹แˆญ แ‰ แˆซแˆตแˆฐแˆญ แ‹ญแˆ˜แˆณแˆฐแˆ‹แˆ แŠฅแŠ“ แ‰ฃแˆ‰แ‰ แ‰ต แ‹จแ‰ตแˆ แ‰ฆแ‰ณ แ‰ แˆ˜แˆตแˆ˜แˆญ แˆ‹แ‹ญ แŠฅแŠ“ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญ แŠฅแŠ•แ‹ฒแ‹ซแАแ‰ก แ‹ซแˆตแ‰ฝแˆแ‹Žแ‰ณแˆแข
แˆ‹แ•แ‰ถแ–แ‰ฝ แŠฅแŠ“ แŠฎแˆแ’แ‹แ‰ฐแˆฎแ‰ฝ
แ‹จแŠฎแˆแ’แ‹แ‰ฐแˆญแ‹ŽแŠ• แ‹ตแˆญ แŠ แˆณแˆฝ แ‰ฐแŒ แ‰…แˆ˜แ‹ แ‰ Google Play แˆ‹แ‹ญ แ‹จแ‰ฐแŒˆแ‹™ แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแแ‰ตแŠ• แˆ›แ‹ณแˆ˜แŒฅ แ‹ญแ‰ฝแˆ‹แˆ‰แข
แŠขแˆชแ‹ฐแˆฎแ‰ฝ แŠฅแŠ“ แˆŒแˆŽแ‰ฝ แˆ˜แˆณแˆชแ‹ซแ‹Žแ‰ฝ
แŠฅแŠ•แ‹ฐ Kobo แŠข-แŠ แŠ•แ‰ฃแ‰ขแ‹Žแ‰ฝ แ‰ฃแˆ‰ แŠข-แ‰€แˆˆแˆ แˆ˜แˆฃแˆชแ‹ซแ‹Žแ‰ฝ แˆ‹แ‹ญ แˆˆแˆ›แŠ•แ‰ แ‰ฅ แ‹แ‹ญแˆ แŠ แ‹แˆญแ‹ฐแ‹ แ‹ˆแ‹ฐ แˆ˜แˆฃแˆชแ‹ซแ‹Ž แˆ›แˆตแ‰ฐแˆ‹แˆˆแ แ‹ญแŠ–แˆญแ‰ฅแ‹Žแ‰ณแˆแข แ‹แ‹ญแˆŽแ‰นแŠ• แ‹ˆแ‹ฐแˆšแ‹ฐแŒˆแ‰ แŠข-แŠ แŠ•แ‰ฃแ‰ขแ‹Žแ‰ฝ แˆˆแˆ›แˆตแ‰ฐแˆ‹แˆˆแ แ‹แˆญแ‹แˆญ แ‹จแŠฅแŒˆแ‹› แˆ›แ‹•แŠจแˆ แˆ˜แˆ˜แˆชแ‹ซแ‹Žแ‰นแŠ• แ‹ญแŠจแ‰ฐแˆ‰แข

แ‰ฐแŠจแ‰ณแ‰ณแ‹ฉแŠ• แ‹ญแ‰€แŒฅแˆ‰

แ‰ฐแŒจแˆ›แˆช แ‰ Fouad Sabry

แ‰ฐแˆ˜แˆณแˆณแ‹ญ แŠข-แˆ˜แŒฝแˆแแ‰ต