Neural Machine Translation

· Cambridge University Press
電子書
410
評分和評論未經驗證  瞭解詳情

關於本電子書

Deep learning is revolutionizing how machine translation systems are built today. This book introduces the challenge of machine translation and evaluation - including historical, linguistic, and applied context -- then develops the core deep learning methods used for natural language applications. Code examples in Python give readers a hands-on blueprint for understanding and implementing their own machine translation systems. The book also provides extensive coverage of machine learning tricks, issues involved in handling various forms of data, model enhancements, and current challenges and methods for analysis and visualization. Summaries of the current research in the field make this a state-of-the-art textbook for undergraduate and graduate classes, as well as an essential reference for researchers and developers interested in other applications of neural methods in the broader field of human language processing.

關於作者

Philipp Koehn is a leading researcher in the field of machine translation and Professor of Computer Science at Johns Hopkins University. In 2010 he authored the textbook Statistical Machine Translation (Cambridge). He received the Award of Honor from the International Association for Machine Translation and was one of three finalists for the European Inventor Award of the European Patent Office in 2013. Professor Koehn also works actively in industry as Chief Scientist for Omniscien Technology and as a consultant for Facebook.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。