Biovalorisation of Wastes to Renewable Chemicals and Biofuels

·
· Elsevier
Ebook
422
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Biovalorisation of Wastes to Renewable Chemicals and Biofuels addresses advanced technologies for converting waste to biofuels and value-added products. Biovalorisation has several advantages over conventional bioremediation processes as it helps reduce the costs of bioprocesses. Examples are provided of several successfully commercialized technologies, giving insight into developing, potential processes for biovalorisation of different wastes. Different bioprocess strategies are discussed for valorising the wastes coming from the leather industry, olive oil industry, pulp and paper, winery, textile, and food industries, as well as aquaculture. A section on biorefinery for hydrocarbons and emerging contaminants is included to cover concepts on biodesulfurization of petroleum wastes, leaching of heavy metals from E – waste, and bioelectrochemical processes for CO2. Chapters on algal biorefinery are also included to focus on the technologies for conversion of CO2 sequestration and wastewater utilization. Biovalorisation of Wastes to Renewable Chemicals and Biofuels can be used as course material for graduate students in chemical engineering, chemistry, and biotechnology, and as a reference for industrial professionals and researchers who want to gain a basic understanding on the subject. - Covers a wide range of topics, from the conversion of wastes to organic acids, biofuels, biopolymers and industrially relevant products - Bridges the gap between academics and industry - Written in a lucid and self-explanatory style - Includes activities/quiz/critical questions

About the author

Navanietha Rathinam is a Research Professor in the Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, South Dakota. His research interests include bioelectrochemical systems for converting wastes to biofuels and value-added products, biofuels from lignocellulosic biomass, extremophilic bioprocessing, and space biology. He is a recipient of prestigious awards including Bioenergy - Award for Cutting Edge Research, Australian Overseas Research Award, and Young Faculty Award in Engineering. He has published over 30 research articles, 10 book chapters, edited 3 books, 1 patent, and PI/Co-I for 4 research grants. He also serves as a panelist for federal agencies such as NASA and NSF. He is selected as a US Ambassador for American Society for Microbiology.

Dr. Sani is a Professor in the Departments of Chemical and Biological Engineering and Chemistry, Biology, and Health Sciences at South Dakota School of Mines and Technology, Rapid City, SD. In the past 16 years, Dr. Sani has taught 15 different courses (e.g., Biochemical Engineering, Extremophilic Bioprocessing, Biochemistry, and Applied Biological Sciences courses) to undergraduate and graduate students at the South Dakota School of Mines and Technology and Washington State University, Pullman WA, and tried to integrate Engineering Sciences with Biological Sciences. His research expertise includes Rules of Life in Biofilms grown on 2D materials, Extremophilic Bioprocessing of Solid Wastes to Biofuels and Value-added Products, Space Biology, Genome Editing, Biocatalysis, and Biopolymers. He has one patent, eleven invention disclosures, published over 100 peer-reviewed articles in high impact factor journals, and has contributed to 34 book chapters. In addition, he has edited 10 books, and has been leading a research consortium funded by the NSF with the aid of 48 scientists and engineers.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.