Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions

· ·
· CRC Press
Ebook
363
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)—classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.

The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations.

To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature.

Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.

About the author

Naiyang Deng, Yingjie Tian, Chunhua Zhang

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.