Mutual Invadability Implies Coexistence in Spatial Models

· Courant Lecture Notes ספר 740 · American Mathematical Soc.
ספר דיגיטלי
118
דפים
הביקורות והדירוגים לא מאומתים מידע נוסף

מידע על הספר הדיגיטלי הזה

In (1994) Durrett and Levin proposed that the equilibrium behaviour of stochastic spatial models could be determined from properties of the solution of the mean field ordinary differential equation (ODE) that is obtained by pretending that all sites are always independent. Here Durrett proves a general result in support of that picture. He gives a condition on an ordinary differential equation which implies that densities stay bounded away from 0 in the associated reaction-diffusion equation, and that coexistence occurs in the stochastic spatial model with fast stirring. Then, using biologists' notion of invadability as a guide, he shows how this condition can be checked in a wide variety of examples that involve two or three species: epidemics, diploid genetics models, predator-prey systems, and various competition models.

רוצה לדרג את הספר הדיגיטלי הזה?

נשמח לשמוע מה דעתך.

איך קוראים את הספר

סמארטפונים וטאבלטים
כל מה שצריך לעשות הוא להתקין את האפליקציה של Google Play Books ל-Android או ל-iPad/iPhone‏. היא מסתנכרנת באופן אוטומטי עם החשבון שלך ומאפשרת לך לקרוא מכל מקום, גם ללא חיבור לאינטרנט.
מחשבים ניידים ושולחניים
ניתן להאזין לספרי אודיו שנרכשו ב-Google Play באמצעות דפדפן האינטרנט של המחשב.
eReaders ומכשירים אחרים
כדי לקרוא במכשירים עם תצוגת דיו אלקטרוני (e-ink) כמו הקוראים האלקטרוניים של Kobo, צריך להוריד קובץ ולהעביר אותו למכשיר. יש לפעול לפי ההוראות המפורטות במרכז העזרה כדי להעביר את הקבצים לקוראים אלקטרוניים נתמכים.