Mutual Invadability Implies Coexistence in Spatial Models

· Courant Lecture Notes መጽሐፍ 740 · American Mathematical Soc.
ኢ-መጽሐፍ
118
ገጾች
የተሰጡት ደረጃዎች እና ግምገማዎች የተረጋገጡ አይደሉም  የበለጠ ለመረዳት

ስለዚህ ኢ-መጽሐፍ

In (1994) Durrett and Levin proposed that the equilibrium behaviour of stochastic spatial models could be determined from properties of the solution of the mean field ordinary differential equation (ODE) that is obtained by pretending that all sites are always independent. Here Durrett proves a general result in support of that picture. He gives a condition on an ordinary differential equation which implies that densities stay bounded away from 0 in the associated reaction-diffusion equation, and that coexistence occurs in the stochastic spatial model with fast stirring. Then, using biologists' notion of invadability as a guide, he shows how this condition can be checked in a wide variety of examples that involve two or three species: epidemics, diploid genetics models, predator-prey systems, and various competition models.

ለዚህ ኢ-መጽሐፍ ደረጃ ይስጡ

ምን እንደሚያስቡ ይንገሩን።

የንባብ መረጃ

ዘመናዊ ስልኮች እና ጡባዊዎች
የGoogle Play መጽሐፍት መተግበሪያውንAndroid እና iPad/iPhone ያውርዱ። ከእርስዎ መለያ ጋር በራስሰር ይመሳሰላል እና ባሉበት የትም ቦታ በመስመር ላይ እና ከመስመር ውጭ እንዲያነቡ ያስችልዎታል።
ላፕቶፖች እና ኮምፒውተሮች
የኮምፒውተርዎን ድር አሳሽ ተጠቅመው በGoogle Play ላይ የተገዙ ኦዲዮ መጽሐፍትን ማዳመጥ ይችላሉ።
ኢሪደሮች እና ሌሎች መሳሪያዎች
እንደ Kobo ኢ-አንባቢዎች ባሉ ኢ-ቀለም መሣሪያዎች ላይ ለማንበብ ፋይል አውርደው ወደ መሣሪያዎ ማስተላለፍ ይኖርብዎታል። ፋይሎቹን ወደሚደገፉ ኢ-አንባቢዎች ለማስተላለፍ ዝርዝር የእገዛ ማዕከል መመሪያዎቹን ይከተሉ።