Multivariate Approximation

ยท Cambridge Monographs on Applied and Computational Mathematics แžŸแŸ€แžœแž—แŸ…แž‘แžธ 32 ยท Cambridge University Press
แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž…
552
แž‘แŸ†แž–แŸแžš
แž€แžถแžšแžœแžถแž™แžแž˜แŸ’แž›แŸƒ แž“แžทแž„แž˜แžแžทแžœแžถแž™แžแž˜แŸ’แž›แŸƒแž˜แžทแž“แžแŸ’แžšแžผแžœแž”แžถแž“แž•แŸ’แž‘แŸ€แž„แž•แŸ’แž‘แžถแžแŸ‹แž‘แŸ แžŸแŸ’แžœแŸ‚แž„แž™แž›แŸ‹แž”แž“แŸ’แžแŸ‚แž˜

แžขแŸ†แž–แžธแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area.

แžขแŸ†แž–แžธโ€‹แžขแŸ’แž“แž€แž“แžทแž–แž“แŸ’แž’

V. Temlyakov is Carolina Distinguished Professor in the Department of Mathematics at the University of South Carolina. He has written several books on approximation theory, and has received numerous honours and awards. His research interests include greedy approximation, compressed sensing, learning theory and numerical integration.

แžœแžถแž™แžแž˜แŸ’แž›แŸƒแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

แž”แŸ’แžšแžถแž”แŸ‹แž™แžพแž„แžขแŸ†แž–แžธแž€แžถแžšแž™แž›แŸ‹แžƒแžพแž‰แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”

แžขแžถแž“โ€‹แž–แŸแžแŸŒแž˜แžถแž“

แž‘แžผแžšแžŸแž–แŸ’แž‘แž†แŸ’แž›แžถแžแžœแŸƒ แž“แžทแž„โ€‹แžแŸแž”แŸ’แž›แŸแž
แžŠแŸ†แžกแžพแž„แž€แž˜แŸ’แž˜แžœแžทแž’แžธ Google Play Books แžŸแž˜แŸ’แžšแžถแž”แŸ‹ Android แž“แžทแž„ iPad/iPhone แŸ” แžœแžถโ€‹แž’แŸ’แžœแžพแžŸแž˜แž€แžถแž›แž€แž˜แŸ’แž˜โ€‹แžŠแŸ„แž™แžŸแŸ’แžœแŸแž™แž”แŸ’แžšแžœแžแŸ’แžแžทแž‡แžถแž˜แžฝแž™โ€‹แž‚แžŽแž“แžธโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€โ€‹ แž“แžทแž„โ€‹แžขแž“แžปแž‰แŸ’แž‰แžถแžแžฑแŸ’แž™โ€‹แžขแŸ’แž“แž€แžขแžถแž“แž–แŸแž›โ€‹แž˜แžถแž“แžขแŸŠแžธแž“แž’แžบแžŽแžทแž แžฌแž‚แŸ’แž˜แžถแž“โ€‹แžขแŸŠแžธแž“แž’แžบแžŽแžทแžโ€‹แž“แŸ…แž‚แŸ’แžšแž”แŸ‹แž‘แžธแž€แž“แŸ’แž›แŸ‚แž„แŸ”
แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšโ€‹แž™แžฝแžšแžŠแŸƒ แž“แžทแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžš
แžขแŸ’แž“แž€แžขแžถแž…แžŸแŸ’แžŠแžถแž”แŸ‹แžŸแŸ€แžœแž—แŸ…แž‡แžถแžŸแŸ†แžกแŸแž„แžŠแŸ‚แž›แž”แžถแž“แž‘แžทแž‰แž“แŸ…แž€แŸ’แž“แžปแž„ Google Play แžŠแŸ„แž™แž”แŸ’แžšแžพแž€แž˜แŸ’แž˜แžœแžทแž’แžธแžšแžปแž€แžšแž€แžแžถแž˜แžขแŸŠแžธแž“แž’แžบแžŽแžทแžแž€แŸ’แž“แžปแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšแžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”
eReaders แž“แžทแž„โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แž•แŸ’แžŸแŸแž„โ€‹แž‘แŸ€แž
แžŠแžพแž˜แŸ’แž”แžธแžขแžถแž“แž“แŸ…แž›แžพโ€‹แžงแž”แž€แžšแžŽแŸ e-ink แžŠแžผแž…แž‡แžถโ€‹แžงแž”แž€แžšแžŽแŸแžขแžถแž“โ€‹แžŸแŸ€แžœแž—แŸ…แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€ Kobo แžขแŸ’แž“แž€แž“แžนแž„แžแŸ’แžšแžผแžœโ€‹แž‘แžถแž‰แž™แž€โ€‹แžฏแž€แžŸแžถแžš แž แžพแž™โ€‹แž•แŸ’แž‘แŸแžšแžœแžถแž‘แŸ…โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ” แžŸแžผแž˜แžขแž“แžปแžœแžแŸ’แžแžแžถแž˜โ€‹แž€แžถแžšแžŽแŸ‚แž“แžถแŸ†แž›แž˜แŸ’แžขแžทแžแžšแž”แžŸแŸ‹แž˜แž‡แŸ’แžˆแž˜แžŽแŸ’แžŒแž›แž‡แŸ†แž“แžฝแž™ แžŠแžพแž˜แŸ’แž”แžธแž•แŸ’แž‘แŸแžšแžฏแž€แžŸแžถแžšโ€‹แž‘แŸ…แžงแž”แž€แžšแžŽแŸแžขแžถแž“แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แžŠแŸ‚แž›แžŸแŸ’แž‚แžถแž›แŸ‹แŸ”

แž”แž“แŸ’แžแžŸแŸŠแŸแžšแžธ

แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€โ€‹แžŸแŸ’แžšแžŠแŸ€แž„แž‚แŸ’แž“แžถ