Multicriteria Optimization

· Lecture Notes in Economics and Mathematical Systems Buku 491 · Springer Science & Business Media
e-Buku
248
Halaman
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Life is about decisions. Decisions, no matter if made by a group or an indi vidual, involve several conflicting objectives. The observation that real world problems have to be solved optimally according to criteria, which prohibit an "ideal" solution - optimal for each decision-maker under each of the criteria considered - has led to the development of multicriteria optimization. From its first roots, which where laid by Pareto at the end of the 19th century the discipline has prospered and grown, especially during the last three decades. Today, many decision support systems incorporate methods to deal with conflicting objectives. The foundation for such systems is a mathematical theory of optimization under multiple objectives. Fully aware of the fact that there have been excellent textbooks on the topic before, I do not claim that this is better text, but it has a has a consid erably different focus. Some of the available books develop the mathematical background in great depth, such as [SNT85, GN90, Jah86). Others focus on a specific structure of the problems covered as [Zel74, Ste85, Mie99) or on methodology [Yu85, CH83a, HM79). Finally there is the area of multicriteria decision aiding [Roy96, Vin92, KR93), the main goal of which is to help deci sion makers find the final solution (among many "optimal" ones) eventually to be implemented.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.

Teruskan siri ini

Lagi oleh Matthias Ehrgott

E-buku serupa