Molecular Symmetry, Super-Rotation, and Semiclassical Motion: New Ideas for Solving Old Problems

· Springer Series on Atomic, Optical, and Plasma Physics Kitabu cha 97 · Springer
Kitabu pepe
171
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions. The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts.
The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited.The central part of the book is the discussion of extremely floppy molecules, which are not describable in the framework of traditional theories. The book introduces a fundamentally new approach to describing the molecular dynamics of these molecules - the super-rotor model, which is based on a five-dimensional symmetry that has never been observed in molecules before. By applying the super-rotor theory to the prototype of floppy molecules, protonated methane, this model can consistently predict the symmetry and energy of low-energy states, which were characterized experimentally only a few years ago. The theoretical predictions agree with the experimental results, which makes the prospect of further developing the super-rotor theory and applying it to other molecules a promising one. In the final section, the book also covers the topic of ultrafast rotations, where usual quantum calculations reach their natural limits. A semi-classical method for determining rotational energies, developed in the early 1990s, is shown to be attachable to quantum calculations of the vibrational states. This new combined method is suitable for efficiently calculating ro-vibrational energies, even for molecular states with large angular momentum.

Kuhusu mwandishi

Hanno Schmiedt received his PhD from the University of Cologne, Germany, in 2017, where he also obtained his MSc in 2014. In 2009, he became a fellow of the German National Academic Foundation, and he was awarded the “Honors Branch” scholarship of the Bonn Cologne Graduate School of Physics and Astronomy (BCGS) in 2014.

His research focus is on molecular spectroscopy, where he studies unconventional dynamical behavior in small molecular systems. He is the co-author of several publications on molecular symmetry and semiclassical calculations of rotational energies for small molecules.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.