Moduli Spaces of Riemannian Metrics

·
· Oberwolfach Seminars Livro 46 · Springer
Livro eletrónico
123
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.

Acerca do autor

Wilderich Tuschmann's general research interests lie in the realms of global differential geometry, Riemannian geometry, geometric topology, and their applications, including, for example, questions concerning the geometry and topology of nonnegative and almost nonnegative curvature, singular metric spaces, collapsing and Gromov-Hausdorff convergence, analysis and geometry on Alexandrov spaces, geometric finiteness theorems, moduli spaces of Riemannian metrics, transformation groups, geometric bordism invariants, information and quantum information geometry. After his habilitation in mathematics at the University of Leipzig in 2000 he worked as a Deutsche Forschungsgemeinschaft Heisenberg Fellow at Westfälische Wilhems-Universität Münster, and from 2005-2010 he held a professorship at Christian-Albrechts-Universität Kiel. In the fall of 2010 he was appointed professor of mathematics at Karlsruhe Institute of Technology (KIT), a position he currently holds. David Wraith's main mathematical interests concern the existence of Riemannian metrics satisfying various kinds of curvature conditions and their topological implications. Most of his work to date has focused on the existence of positive Ricci curvature metrics. He has worked at the National University of Ireland Maynooth since 1997.

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.