Moduli Spaces of Riemannian Metrics

·
· Oberwolfach Seminars 46 巻 · Springer
電子書籍
123
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.

著者について

Wilderich Tuschmann's general research interests lie in the realms of global differential geometry, Riemannian geometry, geometric topology, and their applications, including, for example, questions concerning the geometry and topology of nonnegative and almost nonnegative curvature, singular metric spaces, collapsing and Gromov-Hausdorff convergence, analysis and geometry on Alexandrov spaces, geometric finiteness theorems, moduli spaces of Riemannian metrics, transformation groups, geometric bordism invariants, information and quantum information geometry. After his habilitation in mathematics at the University of Leipzig in 2000 he worked as a Deutsche Forschungsgemeinschaft Heisenberg Fellow at Westfälische Wilhems-Universität Münster, and from 2005-2010 he held a professorship at Christian-Albrechts-Universität Kiel. In the fall of 2010 he was appointed professor of mathematics at Karlsruhe Institute of Technology (KIT), a position he currently holds. David Wraith's main mathematical interests concern the existence of Riemannian metrics satisfying various kinds of curvature conditions and their topological implications. Most of his work to date has focused on the existence of positive Ricci curvature metrics. He has worked at the National University of Ireland Maynooth since 1997.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。