Modern Methods of Drug Discovery

ยท
ยท Experientia: Supplementum เจ•เจฟเจคเจพเจฌ 93 ยท Birkhรคuser
เจˆ-เจ•เจฟเจคเจพเจฌ
292
เจชเฉฐเจจเฉ‡
เจฐเฉ‡เจŸเจฟเฉฐเจ—เจพเจ‚ เจ…เจคเฉ‡ เจธเจฎเฉ€เจ–เจฟเจ†เจตเจพเจ‚ เจฆเฉ€ เจชเฉเจธเจผเจŸเฉ€ เจจเจนเฉ€เจ‚ เจ•เฉ€เจคเฉ€ เจ—เจˆ เจนเฉˆ ย เจนเฉ‹เจฐ เจœเจพเจฃเฉ‹

เจ‡เจธ เจˆ-เจ•เจฟเจคเจพเจฌ เจฌเจพเจฐเฉ‡

Research in the pharmaceutical industry today is in many respects quite different from what it used to be only fifteen years ago. There have been dramatic changes in approaches for identifying new chemical entities with a desired biological activity. While chemical modification of existing leads was the most important approach in the 1970s and 1980s, high-throughput screening and structure-based design are now major players among a multitude of methods used in drug discov ery. Quite often, companies favor one of these relatively new approaches over the other, e.g., screening over rational design, or vice versa, but we believe that an intelligent and concerted use of several or all methods currently available to drug discovery will be more successful in the medium term. What has changed most significantly in the past few years is the time available for identifying new chemical entities. Because of the high costs of drug discovery projects, pressure for maximum success in the shortest possible time is higher than ever. In addition, the multidisciplinary character of the field is much more pronounced today than it used to be. As a consequence, researchers and project managers in the pharmaceutical industry should have a solid knowledge of the more important methods available to drug discovery, because it is the rapidly and intelligently combined use of these which will determine the success or failure of preclinical projects.

เจ‡เจธ เจˆ-เจ•เจฟเจคเจพเจฌ เจจเฉ‚เฉฐ เจฐเฉ‡เจŸ เจ•เจฐเฉ‹

เจ†เจชเจฃเฉ‡ เจตเจฟเจšเจพเจฐ เจฆเฉฑเจธเฉ‹

เจชเฉœเฉเจนเจจ เจธเฉฐเจฌเฉฐเจงเฉ€ เจœเจพเจฃเจ•เจพเจฐเฉ€

เจธเจฎเจพเจฐเจŸเจซเจผเฉ‹เจจ เจ…เจคเฉ‡ เจŸเฉˆเจฌเจฒเฉˆเฉฑเจŸ
Google Play Books เจเจช เจจเฉ‚เฉฐ Android เจ…เจคเฉ‡ iPad/iPhone เจฒเจˆ เจธเจฅเจพเจชเจค เจ•เจฐเฉ‹เฅค เจ‡เจน เจคเฉเจนเจพเจกเฉ‡ เจ–เจพเจคเฉ‡ เจจเจพเจฒ เจธเจตเฉˆเจšเจฒเจฟเจค เจคเฉŒเจฐ 'เจคเฉ‡ เจธเจฟเฉฐเจ• เจ•เจฐเจฆเฉ€ เจนเฉˆ เจ…เจคเฉ‡ เจคเฉเจนเจพเจจเฉ‚เฉฐ เจ•เจฟเจคเฉ‹เจ‚ เจตเฉ€ เจ†เจจเจฒเจพเจˆเจจ เจœเจพเจ‚ เจ†เจซเจผเจฒเจพเจˆเจจ เจชเฉœเฉเจนเจจ เจฆเจฟเฉฐเจฆเฉ€ เจนเฉˆเฅค
เจฒเฉˆเจชเจŸเจพเจช เจ…เจคเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ
เจคเฉเจธเฉ€เจ‚ เจ†เจชเจฃเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ เจฆเจพ เจตเฉˆเฉฑเจฌ เจฌเฉเจฐเจพเจŠเจœเจผเจฐ เจตเจฐเจคเจฆเฉ‡ เจนเฉ‹เจ Google Play 'เจคเฉ‡ เจ–เจฐเฉ€เจฆเฉ€เจ†เจ‚ เจ—เจˆเจ†เจ‚ เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌเจพเจ‚ เจธเฉเจฃ เจธเจ•เจฆเฉ‡ เจนเฉ‹เฅค
eReaders เจ…เจคเฉ‡ เจนเฉ‹เจฐ เจกเฉ€เจตเจพเจˆเจธเจพเจ‚
e-ink เจกเฉ€เจตเจพเจˆเจธเจพเจ‚ 'เจคเฉ‡ เจชเฉœเฉเจนเจจ เจฒเจˆ เจœเจฟเจตเฉ‡เจ‚ Kobo eReaders, เจคเฉเจนเจพเจจเฉ‚เฉฐ เฉžเจพเจˆเจฒ เจกเจพเจŠเจจเจฒเฉ‹เจก เจ•เจฐเจจ เจ…เจคเฉ‡ เจ‡เจธเจจเฉ‚เฉฐ เจ†เจชเจฃเฉ‡ เจกเฉ€เจตเจพเจˆเจธ 'เจคเฉ‡ เจŸเฉเจฐเจพเจ‚เจธเจซเจฐ เจ•เจฐเจจ เจฆเฉ€ เจฒเฉ‹เฉœ เจนเฉ‹เจตเฉ‡เจ—เฉ€เฅค เจธเจฎเจฐเจฅเจฟเจค eReaders 'เจคเฉ‡ เฉžเจพเจˆเจฒเจพเจ‚ เจŸเฉเจฐเจพเจ‚เจธเจซเจฐ เจ•เจฐเจจ เจฒเจˆ เจตเฉ‡เจฐเจตเฉ‡ เจธเจนเจฟเจค เจฎเจฆเจฆ เจ•เฉ‡เจ‚เจฆเจฐ เจนเจฟเจฆเจพเจ‡เจคเจพเจ‚ เจฆเฉ€ เจชเจพเจฒเจฃเจพ เจ•เจฐเฉ‹เฅค

เจธเฉ€เจฐเฉ€เฉ› เจœเจพเจฐเฉ€ เจฐเฉฑเจ–เฉ‹

Alexander Hillisch เจตเฉฑเจฒเฉ‹เจ‚ เจนเฉ‹เจฐ

เจฎเจฟเจฒเจฆเฉ€เจ†เจ‚-เจœเฉเจฒเจฆเฉ€เจ†เจ‚ เจˆ-เจ•เจฟเจคเจพเจฌเจพเจ‚