Modellierung, Implementierung und Strukturvergleich eigener neuronaler Netze zur Handschrifterkennung und Vergleich mit modernen Bibliotheken: Neuronale Netze selbst gemacht!

· Aus der Reihe: e-fellows.net stipendiaten-wissen 第 3529 冊 · GRIN Verlag
電子書
37
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

Facharbeit (Schule) aus dem Jahr 2019 im Fachbereich Informatik - Künstliche Intelligenz, Note: 0,7, , Sprache: Deutsch, Abstract: Künstliche Intelligenz und neuronale Netze sind Teil eines der interessantesten Themengebiete der modernen Informatik. Jene sind allerdings recht komplex und vor allem im Detail nicht sehr leicht verständlich. In dieser Facharbeit werden künstliche neuronale Netze von Grund auf modelliert und in Python implementiert. Mit diesem Bottom-Up-Ansatz soll das Konzept und die konkrete Funktionsweise jener Strukturen verständlich werden. Hierbei wird das Konzept eines künstlichen neuronalen Netzwerks erklärt. Zuerst werden die mathematischen Grundlagen erarbeitet und optimiert. Danach werden Feedforward-Netzwerke in Python selbstständig Schritt für Schritt implementiert und mithilfe des Backpropagation-Algorithmus auf 60000 Abbildungen handschriftlich gezeichneter Ziffern trainiert. Es werden hierbei verschiedene Netzwerkstrukturen analysiert. Mit der Bibliothek TensorFlow werden ebenfalls ähnliche Netze erstellt und mit der eigenen Implementierung verglichen. Diverse Probleme wie Overfitting und Underfitting werden erläutert und diskutiert.Mithilfe eines Programmes wird die Klassifizierung eigener Zeichnungen ermöglicht und demonstriert. Es wird festgestellt, dass es für jedes Problem eine optimale Netzstruktur geben muss, und dass ein komplexeres Netz nicht zwingend mit einer höheren Genauigkeit verbunden sein muss. Die eigene Implementierung unterscheidet sich von der modernen Bibliothek hauptsächlich im Kriterium Geschwindigkeit (Zeitkosten).

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。