Microscopic Traffic Simulation of Automated Driving: Modeling and Evaluation of Traffic Performance

· Linköping Studies in Science and Technology. Dissertations Գիրք 1 · Linköping University Electronic Press
Էլ. գիրք
52
Էջեր
Գնահատականները և կարծիքները չեն ստուգվում  Իմանալ ավելին

Այս էլ․ գրքի մասին

The introduction of automated driving systems (ADSs) in road transportation systems will affect the traffic flow characteristics, and have ripple effects which will lead to larger societal implications. The traffic flow is characterized by speed, density, and vehicular throughput, which determine the road capacity and the traffic performance in terms of, among others, travel times and delays. A tool used to study traffic flow dynamics and analyze traffic performance is microscopic traffic simulation, which works by describing the interactions between road users to simulate observed traffic phenomena.

To use microscopic traffic simulation to evaluate the impact of ADSs on traffic performance, driving models need to be able to simulate driving decisions and behavioral patterns of ADSs. Driving models have been proposed specifically for ADSs, however, it remains to be validated whether these driving models when used in combination with traditional human driving models adequately simulate mixed traffic that includes human drivers and ADSs. Ideally, a clear interpretation of the behavioral assumptions for each type of vehicle should be possible, as these determine the simulation results. However, it is challenging to compare behavioral assumptions when using different driving models to describe different vehicle types. Empirical research has validated that some driving models, such as the intelligent driver car-following model (IDM), are well-suited for describing both human or automated driving when calibrated with the proper data.

The aim of this thesis is two fold: to further develop microscopic traffic simulation for the study of mixed traffic, and to evaluate the effects of mixed traffic on motorway traffic performance. To enhance the modeling of mixed traffic, a model for perception is proposed which allows the explicit inclusion of perception errors in driving decisions. Its use, in combination with driving models capable of describing both human and automated driving, enables to make distinctions between human drivers and ADSs both in perception capabilities and in driving behavior. This modeling approach focuses on describing essential differences to simulate mixed traffic and removes risks involved in using different driving models.

Simulation experiments are conducted using state-of-the-art tools to evaluate the modeling of perception errors on traffic flow dynamics and to evaluate the effects of mixed traffic on motorway traffic performance.

Գնահատեք էլ․ գիրքը

Կարծիք հայտնեք։

Տեղեկություններ

Սմարթֆոններ և պլանշետներ
Տեղադրեք Google Play Գրքեր հավելվածը Android-ի և iPad/iPhone-ի համար։ Այն ավտոմատ համաժամացվում է ձեր հաշվի հետ և թույլ է տալիս կարդալ առցանց և անցանց ռեժիմներում:
Նոթբուքներ և համակարգիչներ
Դուք կարող եք լսել Google Play-ից գնված աուդիոգրքերը համակարգչի դիտարկիչով:
Գրքեր կարդալու սարքեր
Գրքերը E-ink տեխնոլոգիան աջակցող սարքերով (օր․՝ Kobo էլեկտրոնային ընթերցիչով) կարդալու համար ներբեռնեք ֆայլը և այն փոխանցեք ձեր սարք։ Մանրամասն ցուցումները կարող եք գտնել Օգնության կենտրոնում։