Methods of Mathematical Finance

· Probability Theory and Stochastic Modelling Bok 39 · Springer
E-bok
415
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

This monograph is a sequel to Brownian Motion and Stochastic Calculus by the same authors. Within the context of Brownian-motion-driven asset prices, it develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets. The latter topic is extended to the study of complete market equilibrium, providing conditions for the existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the text.

This monograph should be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. Thechapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options.

The present corrected printing includes, besides other minor corrections, an important correction of Theorem 6.4 and a simplification of the proof of Lemma 6.5.

Also available by Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag New York, Inc., 1991, 470 pp., ISBN 0-387- 97655-8.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.