Methods of Mathematical Finance

· Probability Theory and Stochastic Modelling Bog 39 · Springer
E-bog
415
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This monograph is a sequel to Brownian Motion and Stochastic Calculus by the same authors. Within the context of Brownian-motion-driven asset prices, it develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets. The latter topic is extended to the study of complete market equilibrium, providing conditions for the existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the text.

This monograph should be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. Thechapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options.

The present corrected printing includes, besides other minor corrections, an important correction of Theorem 6.4 and a simplification of the proof of Lemma 6.5.

Also available by Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag New York, Inc., 1991, 470 pp., ISBN 0-387- 97655-8.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.