Methods of Contour Integration

· North-Holland Series in Applied Mathematics and Mechanics Libro 3 · Elsevier
5,0
1 reseña
eBook
440
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Methods of Contour Integration contains two parts: (1) a systematic exposition of the computational method for solving boundary and mixed problems, and (2) the contour-integral method for investigating general linear mixed problems. The first part includes formulae for expanding arbitrary vector-valued functions in series from integral residues of solutions of boundary-value problems for systems of ordinary differential equations with discontinuous coefficients. These formulae give residue representations of solutions of the corresponding one-dimensional mixed problems for equations with discontinuous coefficients. The book also explains a computational method of separating the variables which is a generalization of the ordinary method of separating variables to the case of nonself-adjoint operators. In part two, the text discusses one-dimensional mixed problems for equations with discontinuous coefficients. Under regular boundary conditions, it proves the existence of solutions for these problems and the representability of the solutions in the form of contour integrals with a complex parameter. The text points out that the contour-integral method is also applicable to parabolic equations and to equations in which the coefficients are functions of time. The book is ideal for mathematicians, students, and professor of calculus and advanced mathematics.

Valoraciones y reseñas

5,0
1 reseña

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.