Mean Field Guided Machine Learning

· ·
· Springer Nature
eBook
150
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book explores the integration of Mean Field Game (MFG) theory with machine learning (ML), presenting both theoretical foundations and practical applications. Drawing from extensive research, it provides insights into how MFG can improve various ML techniques, including supervised learning, reinforcement learning, and federated learning.

MFG theory and ML are converging to address critical challenges in high-dimensional spaces and multi-agent systems. While ML has transformed industries by leveraging vast data and computational power, scalability and robustness remain key concerns. MFG theory, which models large populations of interacting agents, offers a mathematical framework to simplify and optimize complex systems, enhancing ML’s efficiency and applicability.

By bridging these two fields, this book aims to drive innovation in scalable and robust machine learning. The integration of MFG with ML not only expands research possibilities but also paves the way for more adaptive and intelligent systems. Through this work, the authors hope to inspire further exploration and development in this promising interdisciplinary domain. With case studies and real-world examples, this book serves as a guide for researchers and students in communications and networks seeking to harness MFG’s potential in advancing ML. Industry managers, practitioners and government research workers in the fields of communications and networks will find this book a valuable resource as well.

저자 정보

Dr, Yuhan Kang received the B.S. degree from the School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China, in 2019, and the Ph.D. degree with the Electrical and Computer Engineering Department, the University of Houston, Houston, TX, USA in 2023. Currently he is AI Research Scientist for Weichai America Corp. His research interest include mean-field game theory, machine learning, deep learning, Internet-of-Things networks, and optimization theory.

Dr. Hao Gao received the B.E. degree in electrical and information engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2018, and Ph.D. degree in electrical engineering with the University of Houston, Houston, TX, USA in 2022. Currently he is senior Engineering in Samsung, California, USA. His research interests include mean field game, machine learning, and related applications in wireless communication.

Dr. Zhu Han received the B.S. degree in electronic engineering from Tsinghua University, in 1997, and the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Maryland, College Park, in 1999 and 2003, respectively. Currently, he is a John and Rebecca Moores Professor in the Electrical and Computer Engineering Department as well as in the Computer Science Department at the University of Houston, Texas. Dr. Han received IEEE fellow since 2014, AAAS fellow since 2019, and ACM Fellow since 2024. Dr. Han is a 1% highly cited researcher since 2017 according to Web of Science. Dr. Han is also the winner of the 2021 IEEE Kiyo Tomiyasu Award (an IEEE Field Award), for outstanding early to mid-career contributions to technologies holding the promise of innovative applications, with the following citation: for contributions to game theory and distributed management of autonomous communication networks.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.