Matrix Representations of Groups

· Courier Dover Publications
Електронна книга
112
Сторінки
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

Recognizing that the theory of group representations is fundamental to several areas of science and mathematics — including particle physics, crystallography, and group theory — the National Bureau of Standards published this basic but complete exposition of the subject in 1968 in their Applied Mathematics Series. The most significant facts about group representation are developed in an accessible manner, requiring only a familiarity with classical matrix theory. The treatment is rendered self-contained with a series of concise Appendixes that explore elements of the theory of algebraic numbers.
Subjects include representations of arbitrary groups, representations of finite groups, multiplication of representations, and bounded representations and Weyl's theorem. All of the important elementary results are featured, a number of advanced topics are discussed, and several special representations are worked out in detail. 1968 edition.

Про автора

Morris Newman (1924–2007) received his Ph.D. from the University of Pennsylvania and was a research mathematician at the National Bureau of Standards from 1952–77. From 1977 until his 1993 retirement, he was Professor of Mathematics at the University of California, Santa Barbara, where he continued working with students for many years after his retirement. He is the author of Integral Matrices.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.