Matrix Representations of Groups

· Courier Dover Publications
El. knyga
112
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

Recognizing that the theory of group representations is fundamental to several areas of science and mathematics — including particle physics, crystallography, and group theory — the National Bureau of Standards published this basic but complete exposition of the subject in 1968 in their Applied Mathematics Series. The most significant facts about group representation are developed in an accessible manner, requiring only a familiarity with classical matrix theory. The treatment is rendered self-contained with a series of concise Appendixes that explore elements of the theory of algebraic numbers.
Subjects include representations of arbitrary groups, representations of finite groups, multiplication of representations, and bounded representations and Weyl's theorem. All of the important elementary results are featured, a number of advanced topics are discussed, and several special representations are worked out in detail. 1968 edition.

Apie autorių

Morris Newman (1924–2007) received his Ph.D. from the University of Pennsylvania and was a research mathematician at the National Bureau of Standards from 1952–77. From 1977 until his 1993 retirement, he was Professor of Mathematics at the University of California, Santa Barbara, where he continued working with students for many years after his retirement. He is the author of Integral Matrices.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.