Matrix Representations of Groups

· Courier Dover Publications
E-Book
112
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

Recognizing that the theory of group representations is fundamental to several areas of science and mathematics — including particle physics, crystallography, and group theory — the National Bureau of Standards published this basic but complete exposition of the subject in 1968 in their Applied Mathematics Series. The most significant facts about group representation are developed in an accessible manner, requiring only a familiarity with classical matrix theory. The treatment is rendered self-contained with a series of concise Appendixes that explore elements of the theory of algebraic numbers.
Subjects include representations of arbitrary groups, representations of finite groups, multiplication of representations, and bounded representations and Weyl's theorem. All of the important elementary results are featured, a number of advanced topics are discussed, and several special representations are worked out in detail. 1968 edition.

Autoren-Profil

Morris Newman (1924–2007) received his Ph.D. from the University of Pennsylvania and was a research mathematician at the National Bureau of Standards from 1952–77. From 1977 until his 1993 retirement, he was Professor of Mathematics at the University of California, Santa Barbara, where he continued working with students for many years after his retirement. He is the author of Integral Matrices.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.