Matrix Norms and their Applications

·
· Operator Theory: Advances and Applications Cartea 36 · Birkhäuser
Carte electronică
210
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

CHAPTER 1 - OPERATORS IN FINITE-DIMENSIONAL NORMED SPACES 1 §l. Norms of vectors, linear functionals, and linear operators. 1 § 2. Survey of spectral theory 14 § 3. Spectral radius . 17 § 4. One-parameter groups and semigroups of operators. 25 Appendix. Conditioning in general computational problems 28 CHAPTER 2 - SPECTRAL PROPERTIES OF CONTRACTIONS 33 §l. Contractive operators and isometries. 33 §2. Stability theorems. 46 §3. One-parameter semigroups of contractions and groups of isometries. 48 § 4. The boundary spectrum of extremal contractions. 52 §5. Extreme points of the unit ball in the space of operators. 64 §6. Critical exponents. 66 §7. The apparatus of functions on graphs. 72 §8. Combinatorial and spectral properties of t -contractions . 81 00 §9. Combinatorial and spectral properties of 96 nonnegative matrices. §10. Finite Markov chains. 102 §ll. Nonnegative projectors. 108 VI CHAPTER 3 - OPERATOR NORMS . 113 §l. Ring norms on the algebra of operators in E 113 §2. Characterization of operator norms. 126 §3. Operator minorants. . . . . . 133 §4. Suprema of families of operator norms 141 §5. Ring cross-norms . . 150 §6. Orthogonally-invariant norms. 152 CHAPTER 4 - STUDY OF THE ORDER STRUCTURE ON THE SET OF RING NORMS . 157 §l. Maximal chains of ring norms. 157 §2. Generalized ring norms. 160 §3. The lattice of subalgebras of the algebra End(E) 166 § 4 • Characterization of automorphisms 179 201 Brief Comments on the Literature 205 References . .

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.