Mathematics of Keno and Lotteries

· CRC Press
1,0
1 сын-пикир
Электрондук китеп
338
Барактар
Кошсо болот
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

Mathematics of Keno and Lotteries is an elementary treatment of the mathematics, primarily probability and simple combinatorics, involved in lotteries and keno. Keno has a long history as a high-advantage, high-payoff casino game, and state lottery games such as Powerball are mathematically similar. MKL also considers such lottery games as passive tickets, daily number drawings, and specialized games offered around the world. In addition, there is a section on financial mathematics that explains the connection between lump-sum lottery prizes (as with Powerball) and their multi-year annuity options. So-called "winning systems" for keno and lotteries are examined mathematically and their flaws identified.

Баалар жана сын-пикирлер

1,0
1 сын-пикир

Автор жөнүндө

Mark Bollman is Professor of Mathematics and chair of the Department of Mathematics & Computer Science at Albion College in Albion, Michigan, and has taught 111 different courses in his career. Among these courses is "Mathematics of the Gaming Industry," where mathematics majors carefully study the math behind games of chance and travel to Las Vegas, Nevada, in order to compare theory and practice. He has also taken those ideas into Albion's Honors Program in "Great Issues in Humanities: Perspectives on Gambling," which considers gambling from literary, philosophical, and historical points of view as well as mathematically. Mark’s previous book is Basic Gambling Mathematics: The Numbers behind The Neon.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.