Mathematics of Keno and Lotteries

· CRC Press
1,0
1 arvustus
E-raamat
338
lehekülge
Sobilik
Hinnangud ja arvustused pole kinnitatud.  Lisateave

Teave selle e-raamatu kohta

Mathematics of Keno and Lotteries is an elementary treatment of the mathematics, primarily probability and simple combinatorics, involved in lotteries and keno. Keno has a long history as a high-advantage, high-payoff casino game, and state lottery games such as Powerball are mathematically similar. MKL also considers such lottery games as passive tickets, daily number drawings, and specialized games offered around the world. In addition, there is a section on financial mathematics that explains the connection between lump-sum lottery prizes (as with Powerball) and their multi-year annuity options. So-called "winning systems" for keno and lotteries are examined mathematically and their flaws identified.

Hinnangud ja arvustused

1,0
1 arvustus

Teave autori kohta

Mark Bollman is Professor of Mathematics and chair of the Department of Mathematics & Computer Science at Albion College in Albion, Michigan, and has taught 111 different courses in his career. Among these courses is "Mathematics of the Gaming Industry," where mathematics majors carefully study the math behind games of chance and travel to Las Vegas, Nevada, in order to compare theory and practice. He has also taken those ideas into Albion's Honors Program in "Great Issues in Humanities: Perspectives on Gambling," which considers gambling from literary, philosophical, and historical points of view as well as mathematically. Mark’s previous book is Basic Gambling Mathematics: The Numbers behind The Neon.

Hinnake seda e-raamatut

Andke meile teada, mida te arvate.

Lugemisteave

Nutitelefonid ja tahvelarvutid
Installige rakendus Google Play raamatud Androidile ja iPadile/iPhone'ile. See sünkroonitakse automaatselt teie kontoga ja see võimaldab teil asukohast olenemata lugeda nii võrgus kui ka võrguühenduseta.
Sülearvutid ja arvutid
Google Playst ostetud audioraamatuid saab kuulata arvuti veebibrauseris.
E-lugerid ja muud seadmed
E-tindi seadmetes (nt Kobo e-lugerid) lugemiseks peate faili alla laadima ja selle oma seadmesse üle kandma. Failide toetatud e-lugeritesse teisaldamiseks järgige üksikasjalikke abikeskuse juhiseid.