Mathematical and Computational Methods in Photonics and Phononics

· · · · ·
· Mathematical Surveys and Monographs Bok 235 · American Mathematical Soc.
E-bok
509
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics.

An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.

Om forfatteren

Habib Ammari: ETH, Zürich, Switzerland,
Brian Fitzpatrick: ETH, Zürich, Switzerland,
Hyeonbae Kang: Inha University, Incheon, Korea,
Matias Ruiz: École Normale Supérieure, Paris, France,
Sanghyeon Yu: ETH, Zürich, Switzerland,
Hai Zhang: HKUST, Clear Water Bay, Hong Kong

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.