Mathematical Optimization and Economic Theory

· Classics in Applied Mathematics Boek 39 · SIAM
E-boek
527
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Mathematical Optimization and Economic Theory provides a self-contained introduction to and survey of mathematical programming and control techniques and their applications to static and dynamic problems in economics, respectively. It is distinctive in showing the unity of the various approaches to solving problems of constrained optimization that all stem back directly or indirectly to the method of Lagrange multipliers. In the 30 years since its initial publication, there have been many more applications of these mathematical techniques in economics, as well as some advances in the mathematics of programming and control. Nevertheless, the basic techniques remain the same today as when the book was originally published. Thus, it continues to be useful not only to its original audience of advanced undergraduate and graduate students in economics, but also to mathematicians and other researchers interested in learning about the applications of the mathematics of optimization to economics. The book covers in some depth both static programming problems and dynamic control problems of optimization and the techniques of their solution. It also clearly presents many applications of these techniques to economics, and it shows why optimization is important for economics. Audience: mathematicians and other researchers who are interested in learning about the applications of mathematical optimization in economics, as well as students at the advanced undergraduate and beginning graduate level. A basic knowledge of analysis and matrix algebra is recommended. Two appendices summarize the necessary mathematics.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.