Mathematical Modelling with Differential Equations

· CRC Press
Carte electronică
284
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Mathematical Modelling with Differential Equations aims to introduce various strategies for modelling systems using differential equations. Some of these methodologies are elementary and quite direct to comprehend and apply while others are complex in nature and require thoughtful, deep contemplation. Many topics discussed in the chapter do not appear in any of the standard textbooks and this provides users an opportunity to consider a more general set of interesting systems that can be modelled. For example, the book investigates the evolution of a "toy universe," discusses why "alternate futures" exists in classical physics, constructs approximate solutions to the famous Thomas—Fermi equation using only algebra and elementary calculus, and examines the importance of "truly nonlinear" and oscillating systems.

Features
  • Introduces, defines, and illustrates the concept of "dynamic consistency" as the foundation of modelling.
  • Can be used as the basis of an upper-level undergraduate course on general procedures for mathematical modelling using differential equations.
  • Discusses the issue of dimensional analysis and continually demonstrates its value for both the construction and analysis of mathematical modelling.

Despre autor

Ronald E. Mickens is an Emeritus Professor at Clark Atlanta University, Atlanta, GA, and is a Fellow of several professional organizations, including the American Physical Society. He has written or edited seventeen books and published more than 350 peer-reviewed research articles.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.